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Abstract—As part of a larger forest vegetation mapping process sets of “test” stands and then applied to many stands in an
based on Landsat TM and digitial terrain data, inversion of the gutomated mapping system. This work was conducted as part
Ll—S_trahIer model prowdes_esnmates of tree size and cover for of a project to map forest vegetation in the Sierra Nevada
conifer stands. The vegetation maps are intended for use in nat- tai f California. Th tati bei
ural resource management by the US Forest Service. Analysis of mountains of Lalifornia. These \_/ege a |0n_map_s are being pro-
extensive field data in the form of “test” stands from four National  duced for the U.S. Forest Service to assist with management
Forests indicate the following about the Li-Strahler model: 1) the of a variety of resources, including timber, water, and wildlife.
underlying assumptions of independence between tree size andThe vegetation maps include the general vegetation classes of
crown shape are valid, 2) the means for tree geometry parameters 5 q\oodforest, conifer forest, brushand meadowas well as
vary between forest types, 3) estimates of forest cover are reliable, the cl ¢ db Th ifer brushandhard d
and 4) estimates of tree size are unreliable due to the breakdown € classewaleran arren_ ] eco_nl er, rus_ andhar \_NO_O
in the relationship between image intra-stand variance and tree Classes are further subdivided into species associations, or
size. Improvements in estimates of tree size will require additional forest types, using terrain-based predicitive models [12]. For
data beyond a single Landsat TM image, with multidirectional  the coniferclass two additional attributes are needed: tree size,
data a promising possibility. and crown cover. The reason for using the Li—Strahler model is

to provide tree size and crown cover estimates on a stand-by-

I. INTRODUCTION stand basis for these maps. The National Forests mapped to

NE USE OF canopy reflectance models is to recov8ate using the Li-Strahler model are the Tahoe, Stanislaus,
Ovegetation parameters from remotely sensed imag&dumas, and the Lake Tahoe Basin Management Unit. An
which is typically referred to asnversion Many canopy overview of the entire mapping process and general results
reflectance models are not formulated to be invertible, and &&" be found in [13]. The purpose of this paper is to present
either not invertible or difficult to invert, although considerablé detail the methods developed for inverting the model as part
progress on inversion stategies is being made (see for exanf}fl@ mapping system, and the results of tests of the model in
[1]-[7]). One explicitly invertible canopy reflectance modeboth the Plumas National Forest and Lake Tahoe Basin.
is the Li—Strahler model, which is formulated for use with
discontinuous canopies [8]. It was originally designed for usel!l. OVERVIEW OF THE INVERTIBLE LI-STRAHLER MODEL

in forests, and has been tested several times on a limitedrhe Li-Strahler model is designed to estimate the size and
number of stands. In their original paper, Li and Strahlefensity of trees from remotely sensed images. It is a geometric-
tested the model on two conifer stands in northern Californggptical model, and as such relies on the three-dimensional
[8]. Later, Franklin and Strahler [9] inverted the model fo(3-D) structure of the canopy as the primary factor influencing
eight stands in a semi-arid woodland in western Africa. Moli@flectance from the canopy. The model assumes that the
recently, Franklin and Turner [10] report results from tests isatellite measurements (pixels) are larger than the size of
the Jornada LTER in New Mexico for shrub species, and Whdividual tree crowns, but still smaller than the size of forest
and Strahler [11] used the model for the Oregon transect. dtands. In this project, we have used an ellipsoid model for the
each of these papers, the Li-Strahler model is tested for egglape of trees, with as its half crown width as its vertical
stand individually—meaning that data collected in each stapgf-axis, andh as the height from ground to the bottom of the
are used to parameterize and calibrate the model prior to d®wn (Fig. 1). The signal received by the sensor is modeled as
inversion for that stand. consisting of reflected light from tree crowns, their shadows,
This paper reports the results of tests of the Li-Strahlghd the background within the field of view of the sensor.
model in a more general context to evaluate its utility forhus, the signal can be modeled as a linear combination of
mapping vegetation structure using Landsat TM imagery. Theur components and their areal proportions
intent is to test how well the inversion of the model can
be generalized—or parameterized and calibrated from small S=K,G+H KL+ KT +K.Z

Manuscript received July 12, 1995; revised August 23, 1996. where S is the brightness value of a pD(ngv Ke, Ky, K.

C. E. Woodcock, J. B. Collins, V. D. Jakabhazy, X. Li, and S. A. Macombestand for the areal proportions of sunlit background, sunlit
are with the Department of Geography and Center for Remote Sensing, Bogg¢Bwn. shadowed crown. and shadowed background; and
University, Boston, MA 02215 USA (e-mail: curtis@bu.edu). ! ' . !

Y. Wu is with Able Software Company, Lexington, MA 02173 USA. G, C, T, Z are the spectral signatures of the respective com-

Publisher ltem Identifier S 0196-2892(97)02113-X. ponents.

0196-2892/97$10.0Q1 1997 IEEE



406 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 2, MARCH 1997

Greenness
C
m = inf
T
G
Z
m=0
Brightness

Fig. 2. This figure shows the trajectory of image values in the brightness
and greenness dimensions as the number of trees is incr&asedG, and

Z are the spectral signatures for sunlit and shadowed tree crown, and sunlit
and shadowed background, respectively.

Fig. 1. This schematic drawing shows the parameters used to measure {fi§ sjtuation. Thus, landscapes have to be partitioned into
geometry. vegetation stands prior to use of the Li-Strahler model. Us-
) ] ing Landsat TM imagery to produce maps at a scale of
Even if we can solve for the areal proportiods. and 1:24000 translates into minimum sizes of vegetation stands
K4, the problem remains of how to est_lmate tree Crown sizgg approximately 20 TM pixels. We use an automated image
because many small crowns or a few big crowns can yield thggmentation procedure to partition the TM imagery into
samekK. + K, or canopy coverage. The separation of eﬁeci?éups of pixels, or regions, to serve as the basic map units.
associated with tree size and density is based on a relationshi image segmentation procedure is based on a multiple-pass
between image variance and tree size. If a homogeneous foF@@ﬁon-growing algorithm [15].
stand has many pixels, Li and Strahler (1985) proved that if\y/pije image segmentation is used in the automated mapping
the trees are randomly distributed (Poisson) within the Starﬁocedure, it is worth noting that the stands used in this paper
and crown size distribution is independent of tree density, th@pre all hand-delineated on air photos. This results in better
B2~ Vin internal homogeneity within stands, and the results for this
~ 1+W)M situation should be considered a best case scenario relative to

where R? is the mean of the squared crown radias); M Image segmentation.

andV,, are the mean and variance of a “treeness” parameter
m, andW is the coefficient of variation of the squared crown
radiusr?. W can be easily calculated from the coefficient of
variation ofr, if it is lognormally distributed. As mentioned in the overview of the Li—Strahler model,
The “treeness” parameter, on, is defined as the meanthere are several forest parameters needed for inversion of the
of nr2, wheren is the poisson parameter, or the number ahodel, including those describing the geometry of individual
trees per unit area. Conceptually; is like a crown area trees, and those pertaining to the distributional properties of
index, and if multiplied byr would be equivalent to the trees. Additionally, there is a need to determine the spectral
proportion of the area covered by tree crowns if they did netgnatures for the four components of the model: sunlit crown
overlap. It is an important parameter in the interface betweand background, and shadowed crown and background. In
the remote sensing signal and the forest parameters. Figol2 experience using the model, it has become clear that it
shows the spectral signatures for the scene components sndecessary to estimate these forest and image parameters
how the value ofS changes asn increases. When there areseparately for different forest types.
not any treesy;n = 0 and the signal is simply the signature To parameterize the different forest types and calibrate the
of the illuminated backgroun@). As trees are added amd canopy reflectance model, detailed field data are collected in
increases, the signal moves toward a combined sign&gturea number of “test” stands. The test stands are delineated on
which is determined by the crown geometry and illuminatioairphotos and selected to cover the range of forest types, illu-
conditions. The channels used in this graph and for timeination conditions, tree sizes and densities, and background
inversion of the canopy model are the standard brightnessnditions found in the area to be mapped. In each stand,
and greenness indexes from the tassled-cap transformatibe, collection of field data is done at a series of sample sites
calculated using the published coefficients for the Landsat Tiglcated on a fixed grid. The intent is to distribute the sites
[14]. evenly throughout the stand and remove the possibility of
The canopy reflectance model is based on the assumptimasing the precise location of any individual site within the
that there are many pixels in each forest stand—the usestéind on the basis of the attributes of the trees in the immediate
the variance ofm (V,,) in the inversion process requiresvicinity.

I1l. FIELD DATA COLLECTION AND ANALYSIS
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Data are collected at each sample site using a variable-radius 16

plot. This approach samples trees with probability proportional .
to basal area, which is the horizontal area of a tree trunk at LS ° )
breast height. Bitterlich [16] originally developed the method, 2l L. %

and it has become commonly used in forest sampling [17].
It is referred to as a “variable-radius” plot because there is a ty
different size area sampled for each size of tree. Larger treeg
can be farther from the sighting point and still be sampled. ™
An angle gauge is used to determine whether each tree should 06 |
be tallied. An exact solution based on an equation using the
distance from the sighting point and the diameter at breast
height (DBH) of the tree is used for trees too close to judge oo L
using optical instruments. The angle gauges are calibrated
to a specific basal area factor (BAF), meaning that any tree 0 ’ ] g X
counted at a sample point represents the same contribution DBH (meters)
to the estimate of the basal area per unit area. For example, @)

using a 10 rihectare BAF prism, if six trees are tallied at

a site, then the estimate of basal area is 60p@r hectare. 25
For each tree included at a site, the species and DBH are
recorded. Additional measurements at each site are made for 5,

a singlemeasure tregincluding the height, crown width and °
height-to-crown. ‘ :

08

0.4

n

25

(b+h)r

A. Tree Geometry Parameters

One underlying assumption of the model is that the ratios
describing tree shape are independent of tree size. This as-
sumption means, for example, that the overall shape of an 51
ellipsoid as measured by the ratio of the major to the minor
axis (b/r) does not change as trees become larger. Similarly,
the proportion of the height of the entire tree covered by tree 0
crown is assumed constant and independent of tree size. The
data from the measure trees in the tests stands allow evaluation (b)
of these assumptions for the first time. Fig. 3(a)-(c) shows 12
the values for each of the three tree geometry ratig$,
b+ h/r andh/b (see Fig. 1), plotted as a function of DBH, 10
which is a common measure of tree size. These scatter plots
do not indicate any trends in the data, and are the first data R
presented to support the assumptions of the model. As a further ° o
precaution, the data in these graphs were sorted by forest types e ° e
and species and plotted separately. To save space, these graphs I
are not presented here, but they also do not exhibit any trends
between the various ratios and tree size.

The different forest types often do have different mean
values for the tree geometry ratios, indicating that different
conifer species tend to have different shapes. The means for
the three tree geometry ratios for each forest type are given
in Table I. This table shows that trees in the red fir zone have
relatively narrow crowns, while trees in the eastside pine have ©)
wider crowns that extend further down the trunk of the treeFig. 3. (a)-(c) These figures show the relationship between various ratios

of tree shape parameters and tree size. The lack of relationship illustrated in
these graphs is an underlying assumption of the Li—Strahler model.

B. Estimating Parameters for the Test Stands

To calibrate the model there is a need to know the me@gta as follows
tree size, density, and the mean and variancendr each

test stand. All of these can be calculated from the field data. No N, B

The mean stand densify ), defined as the number of trees per n==k E E SR AR T
. : i . ‘s £— ().00007845D7;

pixel (900 n? in this case) is calculated from the test stand i=1j=1 J
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TABLE I 350 T T T T T T T T T
VALUES OF THE VARIOUS TREE GEOMETRY RATIOS FOR DIFFERENT . . R
FOREST TYPES. SEE FiG. 1 FOR THE MEANING OF THE GEOMETRY RATIOS Final signature estimates
300 | Initial signature guesses ---- —
Search ranges -
Forest Type b/r b/h b+h/r 050 | preeees .
%] . . T
@ : :
@ : :
Eastside Mixed Conifer 2.64 123 6.06 E 200 .
Eastside Pine 239 175 4.87 2
Mixed Conifer 277 124 6.01 5
Red Fir 349 130 7.65 © 150 -
‘Westside Pine 281 099 6.66
100 ]
TABLE 1l

50

REsuLTS OF REGRESSIONS OFCROWN DIAMETER

ON DBH For VARIOUS FOREST TYPES -50 0 50 100 150 200 250 300 350 400

Brightness

. 2 Fig. 4. This graph illustrates the search range (boxes) for signatures around

Forest Type intercept slope R initial guesses (dashed line), and the final estimates of the component
signatures (solid line). The example given is the red fir forest type in the
. i . Plumas National Forest.

Eastside Mixed Conifer  2.837 0.304 0.720
Eastside Pine 3.487 0.314  0.556 . ) ) ) .
Mixed Conifer 4.602 0.246  0.506 The method used for signature estimation relies heavily
RedFir 4292 0.181  0.462 on the data from the test stands. The heart of the signature
Westside Pine 4.202 0277 0.559 estimation is the comparison ef-values as calculated from

the field data withm-values estimated by the model using

a certain set of component signatures. The “best” set of
components signatures is defined as the one that minimizes
the total difference between the field measured and model
estimated mean ofn. The search for the “best” set of
component signatues begins with a hand-selected set based
on a graph of the brightness and greenness values from the

where there aréV, points per stand and/, trees per point;
D is DBH of treej in point ¢, measured in centimeterd}
is the basal area factor (in the units of per hectare), and
k is the number of hectares per pixel. For each stdnaan
be calculated as follows

N. Ny test stands. Then, random sets of signatures are drawn from
k B ot o . ;
D=- E E Dijje—ee——o|. within a user-specified range in brightness and greenness
n | 4= 4 0.00007845D;, . .
i=1j=1 J values for each of the component signatures (Fig. 4). Each set

A more useful measure of tree size when using the Li-StrahfrSignatures is used to estimatevalues for each of the test
model is mean crown radiug. To convertD to R, a simple stands, gnd the signatures evgntual!y used are the “best” f|t._
linear regression based on the data from the measure tree5N€ Signatures selected using this approach are shown in
is used. Table Il shows the regression results for five majp}d- 4 for the red fir forest type in the Plumas National Forest.
forest types. Notice that crown width increases more slowy'€S€ Signatures are similar to the ones selected manually,
as a function of DBH for trees in the red fir forest type thaRUt the component signatures for sunlit tree crown and back-
for the others. ground are “brighter.” Fig. 5 shows the estimated component
From the estimates of crown diametgt) and density(n) signatures for five forest types in the Plumas National Forest.

it is possible to calculate the mean of thevalues (orM) as These results exhibit several interesting patterns. As expected
there is little variation iril’, the shadowed tree crown. Also as

M =nR>. expected, there is considerable variatiorinthe background

signature. Third, there is a surprising amount of variation in
the estimates fo#, the shadowed background. The unusually
Vi = RQM(l + W) bright estimates foZ appear to be caused by under estimates

herelV is th ficient of variati  the size distribut of m by the model for some of the test stands. A bright value
whereW is the coefficient of variation of the size distribu |onfo{ 7 increases the model estimates for

which is calculated as the ratio of the mean to the variance Of 5. . otive methods exist for the calibration of the com-

the square of the crown radii measurements. ponent signatures. One possibility would use ground-based
spectral measurements of the various components [18]. This
approach was impractical for this application for several
As described earlier, the model has four component spectr@hsons. First, there were several forest types for which compo-
sighatures(7, C, T and Z representing the sunlit backgroundnent signatures were required. It would have been logistically
sunlit crown, shadowed crown and shadowed backgrourichpossible to collect component signatures for the different
respectively. The component signatures are used throughmgional forest types at the same time as the satellite overpass.
the canopy model inversion process, and their estimation tecond, we did not always know which date of satellite
been one of the primary issues involved in attempting to usaagery we would be using at the time the field data were
the Li—Strahler model for forest mapping over large areas. collected. Since this approach would require atmospheric

Similarly, the varianc€V;,,) can be calculated as

IV. ESTIMATION OF COMPONENT SIGNATURES
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0 50 100 150 200 250 300 Fig. 6. This graph illustrates the behavior of the 2-D look-up-table used to
Brightness estimate the value of: for each pixel. The different lines represent different

values for theb/r ratio.

Fig. 5. This graph shows all final component signatures for the various
forest types in the Plumas National Forest. Of interest is the fact that some
components vary more between forest types than others. stands, the shape of crowns is dominant [8]. Li and Strahler

[8] employed a two-dimensional (2-D) look-up-table to reveal

correction of the satellite imagery to use the ground-basEif variation inm values caused by changing crown apex
spectral measurements, it would have been necessary to midkales for their earlier version of the model that used cones as
measurements of atmospheric conditions at the time of tH¢ shape of trees. A similar technique and argument can be
satellite overpass. applied for ellipsoidal trees by using the variation in the ratio
One issue related to the estimation of component signatuffsthe crown width/heightr/b) in place of the apex angle.
concerns their stability and the amount of field data requiregor this approach, a two-dimensional look-up table is used for
Since a field crew of two people can typically collect théhe estimation ofrn-valuesfor each pixel in a stand.
necessary data for only one test stand per day, these dathhe creation of a 2-D look-up-table uses “forward model-
are expensive. In our mapping projects, where there may ipg," meaning that we assume all unknowns of a pixel are
four or five different forest types within a National Forestnown, and solve for the resulting location in the bright-
we have typically used eight test stands per forest type. TR@sSs/greenness plane. Then a table is constructed for every
data from the Tahoe Basin, where there are 26 test staf@gbination ofm andb/r ratios for a given set of component
within a single forest type allow exploration of the stabilitsignatures. Then this table is used to find theralue andh/r
of the estimates of component signatures. For this test, fiqdio for each pixel in a stand. Fig. 6 illustrates graphically the
signatures were estimated first using all the test stands, dfdure of a 2-D look-up table. In this figure, each line from
then twice separately using half, and then finally four timeg t0 Xoo corresponds to a differenyr ratio. For estimating
using a quarter of the test stands. As the true signatures @pgn-value each pixel is projected to the closest of the three
unknown, the difference between the signatures estimated frBf€s. This approach improves the estimaterofor brightness
the entire dataset serves as a measure of stability. Signat@ed greenness pairs that are not close to the original line

that vary dramatically for a subset of data would be considerBgtweenGd and X .
unstable. Comparison of results for these different amounts of

data indicate little change in the stability between the datas@&sTopography

with half and a quarter of the tests stands. This indicates thaly o |ovel of correction for topography is directly incor-
there may be small incremental improvement associated WBBrated in the Li

Strahler model; the way in which the
the addition of more test stands. y

proportions of the components(,, K., K;, K.) change as a
function of the cosine of the local solar zenith angles ©,)
is solved on a stand-by-stand basis. This corrects for the
If tree crowns all have the same shape, then all pixels wingthening of shadows on slopes facing away from the sun
fall along a line from (zero crown cover) to a point betweerand the foreshortening of shadows on slopes facing the sun.
C and T (full coverage, orX.,) (see Fig. 2). However, However, tests on images illustrated that not only do the
practical situations are never so ideal—pixels usually forproportions of the components change, but the signatures
a scatter around the line. If the scatter is narrow aroumdso change. Thus, we have adopted an additional correction
the line, it is unimportant, but if the scatter is wide it cafior topography based on adjustment of the brightness of the
adversely affect the estimation of both the mean and variargignature forG based on the reasoning below.
of m. The scatter is caused partly because of variation in thelt has long been observed that topographic effects are min-
background signatur€, and partly because of variation in themal in greenness images so their correction for topography is
crown shape. For relatively sparse forest stands, the variatimmecessary. Correction of the brightness image for the cosine
in the background signature is dominant; while for dense foresft the local solar zenith angle compensates for the change

A. Two-Dimensional Look-Up-Table
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in beam illumination on the different topographic surfaces 1
[19]. Using this kind of correction, the brightness of all

pixels in the image could be changed instead of changing the o8 | i
signatures. However, careful examination of the model reveals
that all the component signatures should not be corrected. The
intensity of illumination on tree crowns (componergsand

T) should not be influenced by the local solar zenith angle,
since trees are aligned by gravity rather than normal to the
slope. The intensity of the illumination on the background on
a slope, on the other hand, is proportional to the cosine of
the local solar zenith angle. Thus, we correct the brightness
signal of the illuminated backgroundy, by the cosine of 0 0.2 04 06 08 ]
the illumination angle on a stand-by-stand basis using digital Field M

terrain data. Graphically (Fig. 4), this correction is the shifting @)

of G horizontally. We have not bothered to corre€t the

shadowed background, as it is assumed to be stable and 08 T T T T T
primarily affected by diffuse effects. 07

Model M

V. RESULTS

While the outputs from the model are tree size and density,
to understand the behavior of the model it is most helpful
to evaluate first the estimates of the mean and variance of
m. Fig. 7(a) and (b) shows the relationship between field
measurements and model estimatesdbr the mixed conifer
and eastside pine forest types in the Lake Tahoe Basin.
Fig. 8(a) and (b) shows the results for the variancenofor 0 0 0'1 0'2 ol D —
the same test stands as Fig. 7. From these results it is clear o -3F,-§,g*,v,°-5 06 0.7 08
that the mean ofn is being estimated much more effectively
than the variance afx. Table 1l showsR? values for simple ®
linear regressions between field measured and model estimat@d’: These graphs show the relationships between field-measured values

. ; model estimates fomn for test stands in the Lake Tahoe Basin for the (a)
values for the mean and varianceraf tree crown radiu$R), mixed conifer and (b) eastside pine forest types, respectively.
stand densityn), and crown covefc). Crown cover is one
of the desired output features in our vegetation maps, and can

be calculated as a function of crown radius and count density/Vith respect to topography, the ideal results would be
as follows independence between error in the estimationnofind the

cosine of the local solar zenith andleos 6,). Fig. 11 shows
c=1—c the difference betweem-values as estimated by the model
and measured in the field for the test stands in the Lake Tahoe
The results in Table Il include both the Plumas Nationgasin plotted as a function ebs ©,. Each test stand appears
Forest and the Lake Tahoe Basin. Both sets of results indicg{gce—once when the same signature & is used for all
that the mean ofrn is being estimated more effectively tharstands, and once whef;, is corrected bycos©, for each
the variance ofm. Since the estimates of crown radius argtand. The uncorrected data show a stronger slope with respect
directly dependent on the variance of, the crown radius to cos ©,, indicating the correction byos ©, helps. However,
results mirror those for the variance of. Fig. 9 shows the the slope for theos ©, corrected results is not zero, indicating
expected relationship between crown radius and the variange correction does not entirely solve the problem.
of m for a range of values for the mean wof. Fig. 10 shows
the observed pattern in this relationship, where lines connect
test stands with similar means fet. These figures illustrate VI. DiscussioN
the heart of the problem for tree size estimation, which is the One clear message from the results presented above is that
mismatch between observed and expected patterns betwienLi—Strahler model can not be used to estimate tree size in
tree size and image variance. an automated mapping system based on single date Landsat
When interpreting the results for density in Table Ill, ifTM imagery. This relationship is also indicated by two kinds
is useful to remember that tree size is estimated in the mo@él prior results presented by Woodcoek al. [13]. First,
prior to tree density. If the estimate of the meamofs correct patterns in the field-measured timber volumes for strata based
and the estimate of crown radius is wrong, it is impossiblen estimates from the Li—Strahler model for tree size and cover
for the estimate of density to be correct. Cover, on the othglnow consistent increases in timber volume for increasing
hand, is closely related to the mean+af and thus is more cover, but not for increasing tree size. Second, thematic map
accurately estimated. accuracies for cover classes are higher than for tree size

Model M
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V . . .
ar(m) the size of trees and the spatial resolution of the remote sensor,

Fig. 9. This graphillustrates the expected relationship between crown radauad it is the separation of these effects that is difficult. Li and
(R?) and the variance oft for a range of values for the mean of. Strahler [8] provide the mathematics underlying their model,
but a more physical understanding of the process involved is
classes. The results presented in this paper clearly identiiglpful here. For this approach, there is relevant theory based
that the problems arise from a poor relationship between figdd a simplified model for scenes of discs randomly distributed
measurements of tree size and the observed varianaee ofon a contrasting background, where the binomial distribution
estimated from images. can be used. The analogy to a forest scene is simple, with discs
To understand the meaning of these results and their causewving as trees. The main difference from the Li—Strahler
it is instructive to review the underlying theory. The spatiahodel is the removal of effects related to shadows. Following
variance in images is a complex function of the number anlde notation of Jupgt al. [20], the proportion of an area left
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Fig. 11. This graph illustrates the effect of the topographic correction based
on adjustment of the component signature of the sunlit backgréGhdby  Fig. 12. This figure was originally printed in [25], and shows the relationship
the cosine of the local solar zenith angle. The reduction in the slope of thetween local variance and the ratio between scene object sizes and the spatial
regression line following correction indicates that topographic effects hawesolution of remotely sensed measuremebts.is the spatial resolution, and
been reduced. The fact that the slope is not zero indicates topographic efféa{sis the object size, withy,, measuring the value of the variogram at a
have not been removed. lag of one pixel. For the present case, it illustrates the reason within-stand
variance should increase with tree size, as the spatial resolution of the sensor
is several times larger than the trees.

uncovered(();) by A discs of aread is

There are several possibilities. First, and probably most
Q=M. important, is that the relationship between image variance and
tree size is dependent on the assumption that once cover related
The binomial variance is simpl§; (1-Q1), which approaches effects are removed, tree size is the only factor influencing
zero at both low and high values @};, and peaks in the intra-stand variance. Or, at the very least, tree size is the
middle of the distribution. This simple relationship illustrateslominant factor controlling image variance. One condition
that variance is directly related to cover, which is the combinedquired for this assumption is that all the scene compo-
effect of both object size and count density. This relationshifents are constant in reflectance, so that the relative mix of
describes the fundamental underlying properties of a simemponents determines variance, not the within component
ple binomial scene, but ignores the effects associated withriance. While it is unreasonable to expect no variance within
observation of the scene via remote sensing. In particuliie scene components, it is at least required that the within-
it does not take into account the effects of pixel size, @omponent variance is small in magnitude relative to the
regularization, on the measurements made from such a scefiance introduced by differences in tree size. While this
Fig. 12, which is from Jupgt al. [21], graphically illustrates assumption may be reasonable for trees, it is probably unrea-
the combined effects of pixel size and object (or disc) sizes snnable for the background. In the Sierra Nevada mountains, a
spatial variance. In this figurd), corresponds to the diameterwide range of background materials, and hence reflectance are
of pixels, andD; to the diameter of discs (or trees in ourencountered. This situation is common even within the same
case), and constant values for disc size and count denstsind. Backgrounds vary from exposed rock, to soil and leaf
are used to generate this graph. Tjexis is the value of litter, to a sparse herbacious understory, to a dense understory
the variogram at a lag of one pixel, hence the term “locaf shrubs or hardwood trees.
variance.” Starting at values near zero f3s/D;, the pixels In this respect, the Li—Strahler model behaves much like a
are smaller than objects, and the local spatial variance is lewectral mixture model and is thus subject to the weaknesses
due to the likelihood that neighboring pixels fall on the samef such models. Variance in end members in a spectral mixture
object, or gap between objects. For large valuedefD;, model will degrade results in the same way that variance in
(i.e., greater than 4 or 5), spatial variance is again low #se component signatures will here. In essence, the significant
there are many objects in each pixel, and the proportiodg of difference between the Li-Strahler model and other mixture
within pixels becomes more stable. This situation is analagom®dels is that the combinations of components that can
to the remote sensing of trees using 30 m Landsat TM datecur is limited. Related to the question of signatures of
and has previously been called thaesolution case [22]. Note components is the issue of multiple scattering. When used
that as theD,/D; ratio decreases toward unity that spatidor forward modeling, or estimation of the reflectance from
variance continues to increase. In our case, since pixel sa&dorest stand of known attributes, the Li—Strahler model has
is fixed, increasing tree size decreases I D; ratio, and been criticized for not directly considering multiple scattering
should result in an increase in spatial variance. These ideeithin the canopy. For inversion purposes, the component
form the basis of the relationship exploited in the Li—Strahlesignatures represent a combined signature including the effects
model—which were not found to hold for the test stands in thdf beam and diffuse irradiance and all orders of scattering. The
conifer forests of the Sierra Nevada mountains. The questisignatures are estimated empirically, so there is no need to try
that remains is why the observed data do not match the thedry.quantify the individual effects.
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Another factor that influences variance estimates from irtree geometry parameters differ across forest types; 3) the
ages is the spatial distribution pattern of trees. Any spatiai-Strahler model can be used in automated mapping of forest
patterns diverging from random, or the poisson distributioopver, but tree size estimation is unreliable; 4) the cause of the
will adversely affect variance estimates. Disturbance due pooblems in tree size estimation is the unreliable relationship
selective cutting of trees tends to produce more clumpédtween image intra-stand variance and tree size; 5) the
distributions, which increase measured values of the variartopographic correction procedure used helps but does not
of m in images. In the model, these inflated estimatesnof entirely solve the problem; 6) component signatures estimated
result in over estimation of tree size. This effect was notdtbm test stands are relatively stable, meaning that there is
in many areas. In essence, any factor that increases varialittie change associated with increased numbers of test stands.
unrelated to tree size will undermine the inversion results.
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